ScalingCollapse
Documentation for ScalingCollapse.
ScalingCollapse.Data
ScalingCollapse.Houdayer
ScalingCollapse.Linear
ScalingCollapse.MultipleSplines
ScalingCollapse.ScalingFunction
ScalingCollapse.ScalingProblem
ScalingCollapse.SingleSpline
ScalingCollapse.residuals
ScalingCollapse.scaled_data
ScalingCollapse.Data
— TypeData(L::Int, xs::Vector{Float64}, ys::Vector{Float64}, es::Vector{Float64})
A Data object stores the data for a single system size. Sorted by the x values.
Fields
L::Int
: system sizexs::Vector{Float64}
: x valuesys::Vector{Float64}
: y valueses::Vector{Float64}
: y error values
ScalingCollapse.Houdayer
— TypeHoudayer()
Quality function that uses the Houdayer & Hartmann method to calculate the quality of a scaling. It is less stable than the spline methods and the Linear method and therefore not recommended.
How does it work?
TO BE DOCUMENTED
ScalingCollapse.Linear
— TypeLinear()
Quality function that interpolates all scaled data points to a single master curve. For every data point, we take the closest data points, to the left and to the right to interpolate a linear function. The quality is then calculated as the sum of the squared differences between the data points and the interpolated values.
ScalingCollapse.MultipleSplines
— TypeMultipleSplines(; N_steps::Int=100, weight_density::Bool=true)
Quality function that uses a spline interpolation to calculate the quality of a scaling.
How does it work?
TO BE DOCUMENTED
Keyword arguments
N_steps::Int=100
: Number of points used in the interval to calculate the quality.weight_density::Bool=true
: Iftrue
, the quality is weighted by the density of data points in the interval.
ScalingCollapse.ScalingFunction
— TypeScalingFunction(preset::Symbol; kwargs...)
ScalingFunction(f::Function; kwargs...)
A ScalingFunction
is used in a ScalingProblem
to rescale the data. It is defined by a function f
and a set of parameters p_names
. The function f
is called with the data d
and the parameters p1
, p2
, ... and returns a new Data
object.
Arguments
preset::Symbol
: a preset for theScalingFunction
. SeePresets
below.f::Function
: the functionf
to be used in theScalingFunction
. Pass this argument to create a customScalingFunction
. f should take aData
object and a set of parametersp1
,p2
, ... and return a newData
object: f(d::Data, p1, p2, ...) -> Data.Note that you might want to set the function
f
as a keyword argument to use the "fixing parameters" feature (see below).
Presets
The preset
argument can be used to create a ScalingFunction
with a preset function f
and a preset set of parameter names p_names
. The following presets are available:
:x
rescale the x values of the data according to x -> (x - p1)/p1 * L^(1/p2):xy
rescale the x and y values of the data according to x -> (x - p1)/p1 * L^(1/p2) and y -> y * L^(p3/p2):xny
rescale the x and y values of the data according to x -> (x - p1)/p1 * L^(1/p2) and y -> y * L^(-p3/p2)
Keyword arguments
p_names::Vector{String}
: the parameter namesp_names
to be used in theScalingFunction
. This kwarg can be used to overwrite the preset parameter namesp_names
(p1, p2, ...).f::Function
: the functionf
to be used in theScalingFunction
. This kwarg can be used to overwrite the preset functionf
. If you pass f as a kwarg, instead of an argument, you can use the "fixing parameters" feature (see below). In that case the number of paramters of your function f should match the preset, i.e. if your function f takes 2 parameters, you should use the preset:x
and if your function f takes 3 parameters, you should use the preset:xy
.x_scale::String
: the scaling function for the x values. This is just used to display the scaling function in plots and julias show function.y_scale::String
: the scaling function for the y values. This is just used to display the scaling function in plots and julias show function.p::Float64
: fix a parameter to a value. If you know the analytical value of a scaling parameter you might want to fix it to this value. This can speed up the optimization and give better results. Note, thatp
is either "p1", "p2", ... or the name you specified inp_names
.Note that this feature is only available if you use one of the presets. You can still modify the scaling function by setting
f
as a kwarg.
Examples
Presets
# rescale the x axis only
ScalingFunction(:x; p_names=["T_c", "nu"])
# lets fix nu to 1.0
ScalingFunction(:x; p_names=["T_c", "nu"], nu=1.0)
# rescale the x and y axis
ScalingFunction(:xy; p_names=["T_c", "nu", "beta"])
# rescale the x and y axis with negative exponent on y
ScalingFunction(:xny; p_names=["T_c", "nu", "gamma"])
Custom scaling function
# define the function that scales the data
function myfunction(d::ScalingCollapse.Data, p1, p2)
# initialize arrays for scaled data
xs = zeros(length(d.xs))
ys = zeros(length(d.ys))
es = zeros(length(d.es))
# scale data according to p1 and p2
for (i, x, y, e) in zip(eachindex(d.xs), d.xs, d.ys, d.es)
xs[i] = (x - p1) / p1 * log(d.L)
ys[i] = y * d.L^(p2)
es[i] = e * d.L^(p2)
end
# create new Data object with scaled data
return ScalingCollapse.Data(d.L, xs, ys, es)
end
ScalingFunction(myfunction; p_names=["myp1", "myp2"])
# lets say we want to fix the parameter "myp1" to 1.0
# we use the preset :x (because it also has 2 parameters) and overwrite the function f
ScalingFunction(:x; f=myfunction, p_names=["myp1", "myp2"], myp1=1.0)
ScalingCollapse.ScalingProblem
— TypeScalingProblem(args...; kwargs...)
Create a scaling problem which solves on initialization.
Arguments
xs
: x values of the datays
: y values of the dataes
: y error values of the data (optional)Ls
: system sizes of the data
For more information on the arguments, see methods(ScalingCollapse.unzip_data).
Keyword Arguments
sf::ScalingFunction=ScalingFunction(preset; kwargs...)
: scaling functionp_space::Vector{StepRangeLen}=[0.1:0.1:3.0 for _ in sf.p_names]
: parameter search spacedx::Vector{Float64}=[-Inf, Inf]
: optimization intervalquality::QualityFunction=Linear()
: quality functionquality_scan::QualityFunction=MultipleSplines(scan_mode=true)
: quality function for the parameter space scan (it is highly recommended to use the default function here)verbose::Bool=false
: print information during optimizationstarting_ps::Vector{Float64}
: Ifstarting_ps
are given, there will be no initial parameter space scan. Instead, the optimization will start at the given points. This is much faster, but might not find the global minimum.error::Bool=true
: Iferror=true
, the error analysis will be performed to give estimates of the uncertainties of the optimal parameters.
Fields
data::Vector{Data}
: data to be scaledsf::ScalingFunction
: scaling functionp_space::Vector{StepRangeLen}
: search parameter spacedx::Vector{Float64}
: optimization intervaloptimal_ps::Vector{Float64}
: optimal parametersoptimal_ps_error::Vector{Float64}
: uncertainties of the optimal parametersminimum::Float64
: minimum of the objective functionsolved::Bool
:true
if optimization was calledverbose::Bool
: print information during optimizationerror::Bool
: perform error analysisquality_scan::QualityFunction
: quality function for the parameter space scanquality::QualityFunction
: quality functionskip_scan::Bool
:true
ifstarting_ps
are given by the userstarting_ps::Vector{Float64}
: starting points for the optimizationerrors_defined::Bool
:true
if errors are given by the user
Examples
using ScalingCollapse
rescale the x axis only
# (e.g. for ys == binder cumulant of Ising model)
ScalingProblem(xs, ys, Ls;
sc=ScalingFunction(:x; p_names=["T_c", "nu"]),
p_space=[0.1:0.1:3.0, 0.1:0.1:3.0],
dx=[-1.0, 1.0],
)
# or the same but with errors
ScalingProblem(xs, ys, es, Ls;
sc=ScalingFunction(:x; p_names=["T_c", "nu"]),
p_space=[0.1:0.1:3.0, 0.1:0.1:3.0],
dx=[-1.0, 1.0],
)
rescale the x and y axis
# (e.g. for ys == magnetization of Ising model)
ScalingProblem(xs, ys, Ls;
sc=ScalingFunction(:xy; p_names=["T_c", "nu", "beta"]),
dx=[-1.0, 1.0],
)
rescale the x and y axis, but y axis with negative exponent
# (e.g. for ys == susceptibility of Ising model)
ScalingProblem(xs, ys, Ls;
sc=ScalingFunction(:xny; p_names=["T_c", "nu", "gamma"]),
dx=[-1.0, 1.0],
)
ScalingCollapse.SingleSpline
— TypeSingleSpline()
Quality function that interpolates all scaled data points to a single spline. The quality is then calculated as the sum of the squared differences between the data points and the interpolated values. The spline is fitted using the KissSmoothing.jl package. The number of knots can be specified using the N_knots
keyword argument. If N_knots
is not specified, the number of knots is set to total_number_of_data_points / 10
.
ScalingCollapse.residuals
— Methodresiduals(sp; kwargs...)
Calculate the residuals of the ScalingProblem
around the optimal parameters or for a given parameter space.
Arguments
sp::ScalingProblem
: TheScalingProblem
to calculate the residuals for.
Keyword Arguments
p_space::Vector{Vector{Float64}}
: The parameter space to calculate the residuals for. If not provided, the parameter space is calculated from the optimal parameters, their errors and the number of steps.N_steps::Int=50
: The number of steps to use for the default parameter space.dims::Vector{Int}=[1, ...]
: The dimensions to calculate the residuals for. If not specified, all dimensions are used.
Returns
p_space::Vector{StepRangeLen}
: The parameter space used for the calculation.residuals::Array{Float64}
: The residuals for the given parameter space.
Example
# lets say our xs, ys and Ls are data for the susceptibility of the Ising model
using ScalingCollapse
sp = ScalingProblem(xs, ys, Ls;
sc=ScalingFunction(:xny; p_names=["T_c", "nu", "gamma"]),
dx=[-1.0, 2.0],
)
# now we can calculate the residual landscape around the optimal parameters as follows:
p_space, residuals = residuals(sp)
# in the above case length(p_space) == 3 and size(residuals) == (50, 50, 50)
# we can specify the dimensions we are interested in as follows:
p_space, residuals = residuals(sp; dims=[1, 2])
# now length(p_space) == 2 and size(residuals) == (50, 50)
# we fixed the third parameter (in this case gamma) to its optimal value and calculated
# a 2D cut through the 3D residual landscape
ScalingCollapse.scaled_data
— Methodscaled_data(sp::ScalingProblem)
scaled_data(sp::ScalingProblem, ps)
Return the scaled data of the ScalingProblem
sp
.
Arguments
sp::ScalingProblem
: scaling problemps::Vector{Float64}=sp.optimal_ps
: parameters to scale the data with (manually)
Returns
xs::Vector{Vector{Float64}}
: scaled x valuesys::Vector{Vector{Float64}}
: scaled y valueses::Vector{Vector{Float64}}
: scaled y error valuesLs::Vector{Float64}
: scaled system sizes